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We investigated the use of the quantum Grover algorithm in the mass-spectrometry-based protein identifi-
cation process. The approach coded the mass spectra on a quantum register and uses the Grover search
algorithm for searching multiple solutions to find matches from a database. Measurement of the fidelity
between the input and final states was used to quantify the similarity between the experimental and theoretical
spectra. The optimal number of iteration is proven to be �

4
�N

k , where k refers to the number of marked states.
We found that one iteration is sufficient for the search if we let more that 62% of the N states be marked states.
By measuring the fidelity after only one iteration of Grover search, we discovered that it resembles that of the
correlation-based measurement used in the existing protein identification software. We concluded that the
quantum Grover algorithm can be adapted for a correlation-based mass spectra database search, provided that
decoherence can be kept to a minimum.
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I. INTRODUCTION

The invention of the Grover search algorithm �1,2� gives
rise to many potential speed-up applications offered by a
quantum computer �3�. Its theoretical analyses and practical
implementations have been the focus of research since then.
A variety of applications were developed based on some
variations of the search algorithm �4–6� to solve classical
problems. We are interested in applying the Grover algorithm
to the field of proteomics, in particular, the search of match-
ing mass spectra from a large collection of theoretical mass
spectra of short peptides, calculated from known protein se-
quences.

A. Grover search algorithm

We consider a search space D containing N elements, as-
suming that N=2n, where n is an integer. The elements of D
are represented using an n-qubit register containing the indi-
ces i=0,1 , . . . ,N−1. We assume that there are k marked el-
ements in the search space that are the solution to the search
problem. It is also assumed that there exists a function f :D
→0,1, such that f =1 for the marked elements and f =0 for
the rest. The search for a marked element becomes a search
for an element for which f =1. To solve this problem using a
classical computer, one needs to evaluate f for each element,
one by one, until a marked state is found. Thus on average,
N /2 evaluations of f are necessary and in the worst case, N
evaluations are required. For a quantum computer, the func-
tion f can be evaluated coherently. The Grover search algo-
rithm uses a sequence of unitary operations and it can locate
a marked element using only O��N� coherent queries of f ,
which is faster than classical computers. In the case of k
marked states exist in the database, the number of optimal
iterations is given as ro= �

4
�N

k .
To briefly describe the algorithm, we consider a quantum

system having an initial state of register as �i�= �i1¯ in� of n

qubits, the register is subjected to local Hadamard transfor-
mations, H�n, resulting in a linearly superposed state of all
computational basis,

��� = H�n�0 ¯ 0� =
1

�N
�
i=0

N−1

�i� , �1�

where H= 1
�2

� 1 1
1 −1

�. The states are then subjected to a series of
inversion and diffusion processes before measurement. Dur-
ing the inversion stage, the state undergoes the unitary trans-
formation

I = 1 − 2 �
mi�M

�mi�	mi� , �2�

where M = 
m1 ,m2 , . . . � are the marked states. In the diffu-
sion stage, the state undergoes the transformation

D = − 1 + 2���	�� . �3�

In this way, the state prior to measurement after r iterations
is ��r�= �DI�r����UG

r���.

B. Mass spectrometry

This section intends to provide some background infor-
mation to mass spectrometry. Mass spectrometry �MS� is a
common analytical technique used to identify unknown com-
pounds, quantify known materials, and elucidate the molecu-
lar structure and chemical composition of organic and inor-
ganic substances. A mass spectrometer is an instrument used
to measure the mass-to-charge ratio of individual molecules
that have been converted into electrically charged molecules,
or ions �7�. These ions are filtered and ordered from a lower
to higher mass-to-charge ratio �m /z� before passing through
an ion detector in the instrument �8�. In the field of pro-
teomic analysis, matrix assisted laser desorption ionization
�MALDI� and electrospray ionization �ESI� are two ioniza-
tion techniques generally used. Mass spectrometry is cur-
rently experiencing rapid growth in mass-spectrometry-based
biomarker discovery and clinical proteomics, where hun-
dreds of proteins can be sequenced quickly. As a conse-*Email address: choo�keng�wah@nyp.edu.sg
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quence, large amounts of proteomics data are produced and
made available to the public �9–11�. Although the generation
of raw MS spectra has become easier, the analysis and iden-
tification of the data is a challenge. Many protein identifica-
tion tools have been developed, such as PEAKS �12�, MASCOT

�13�, Phenyx �14�, and OMSSA �15�. In the case of high
throughput proteomics, it involves the analysis of hundreds
of thousands of peptide spectra derived from biological
samples. These spectra can be identified by four general
types of algorithms.

�1� De novo calling of the sequence directly from the
spectrum �12,16,17�.

�2� Use of unambiguous “peptide sequence tags” derived
from spectra that are used to search known sequences
�18–20�.

�3� Cross-correlation methods that correlate experimental
spectra with theoretical spectra �21,22�.

�4� Probability-based matching that calculates a score
based on the statistical significance of a match between an
observed peptide fragment and those calculated from a se-
quence search library �23–27�.

Cross-correlation methods and probability-based match-
ing are two well-received methods for protein identification.
In these methods, a theoretical mass spectra database is first
generated from known protein sequences. To search this da-
tabase with an experimental spectra, the correlation of the
experimental and theoretical spectra is calculated. Based on
the statistical properties of the protein database and the cor-
relation values �actual implementation is more complex�, a
score is given for the matched spectra. Peptide spectra with
scores better than a predetermined threshold will be returned
as hits. Figure 1 shows the plot of overlapping experimental
and theoretical mass spectra.

C. SEQUEST

SEQUEST �28� is one of the search programs that uses a
descriptive model for peptide fragmentation and correlative
matching to a tandem mass spectrum. It uses a two-tiered
scoring scheme to assess the quality of the match between
the experimental spectrum and the theoretical ones from a
database. The first score calculated, the preliminary score Sp,
is an empirically derived score that restricts the number of
sequences analyzed in the correlation analysis. The second
score is the cross-correlation of the experimental and theo-
retical spectra. This score is referred to as Xcorr where the
theoretical and normalized experimental spectra are cross-

FIG. 1. The overlapping plot of experimental mass spectra
against theoretical mass spectra where cross correlation can be
computed.

FIG. 2. The conceptual idea of the database search. The experimental mass spectrum is coded as an oracle to be searched by potential
theoretical mass spectra.
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correlated to obtain similarities between the spectra, as
shown in Eq. �4�. The cross-correlation score is further pro-
cessed with the preliminary score to determine the final score
of the spectrum. SEQUEST has been shown to have good sen-
sitivity and flexibility and is applicable to data generated by

different types of mass spectrometers:

Xcorr�E,T� = �
i=0

N−1

xiyi+t. �4�

FIG. 3. The plot of quantum states at r iteration with k=7 marked states.
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II. METHODS AND MATERIALS

Although correlation-based mass spectra database search
algorithms provide fast and accurate protein prediction,
implementation of these algorithms in a quantum computer
seems challenging. Lomont �29� proved that it is impossible
to have a quantum correlation implemented physically on a
quantum computer. This is unfortunate for proteomics appli-
cations as the opportunity to use a fast quantum algorithm is
apparently denied. We propose to use the Grover search al-
gorithm for this purpose. One immediate solution would be
to code the experimental mass spectra into a register of quan-
tum states and use it to search an oracle to be generated from
all possible theoretical mass spectra. However, this solution
has many disadvantages, such as the coding of experimental
mass spectra into a quantum register, the coding of theoreti-
cal mass spectra into an oracle to be searched, and the com-
plexity of the evaluation function f�s� to be used.

Instead, we propose that the experimental mass spectra be
coded as the oracle to be searched, and the theoretical mass
spectra be the quantum search states. Figure 2 depicts the
conceptual idea of this approach. It can be viewed as a type
of Grover search with multiple solutions, i.e., if there exists
more than one theoretical m /z value matching that of the
experimental one, there will be more than one marked state
in the oracle. With the assumption that a typical experimental
mass spectrum comprises two types of data, the one gener-
ated from actual fragmented ions and that caused by experi-
mental noise, the size of the experimental mass spectrum
would always be larger than the theoretical ones. We can
then consider the m /z values generated from ions as marked
states �m� and the rest �noise� as unmarked states �m��. The
function f�s� is formed such that if the experimental m /z
matches one of the theoretical m /z within an acceptable tol-
erance, then the function returns 1, otherwise a 0 is returned.
The acceptable tolerance depends on the type of mass spec-
trometry technique used �30� and any increase of mass tol-
erance above this threshold can potentially increase false
positive rates for protein identification as suggested by
�25,31�; although one report was found indicating that vary-
ing mass tolerance had little effect on the accuracy of protein
identification �32�.

It is very common for existing algorithms such as Phenyx
�14� and OMSSA �15� to perform prefiltering based on the
intensity of the peaks. This process aims at removing peaks
whose intensities are below a predetermined noise-level
threshold. The remaining peaks will be set to equal intensity
and used for a database search. Our method assumed that the
mass spectrum has gone through the same process, hence all
peaks in our simulation are treated as having equal intensity.

Figure 3 shows the quantum states that code the experi-
mental mass spectrum change under several Grover itera-
tions. The process will be stopped when the optimal number
of iterations ro are reached. The probability of success is then
measured from the final states, where the sum of the prob-
abilities of the experimental spectra matching those theoret-
ical spectra is calculated. A threshold can then be set by the
user whether to accept the search result or reject it. In an
ideal case, the probability of success is equal to one at the
optimal ro iterations. Theoretically, the optimal iteration to

achieve the best search result is given by �
4
�N

k , where k
refers to the number of matched spectra. The fidelity between
the input states and the final states can also be calculated
using the following formula:

F = 	e���e� , �5�

where �= ��r�	�r� and �e� refers to the search state formed
by the theoretical mass spectrum.

It is interesting to note that the fidelity itself is a possible
measure of correlation between the input states and that from
the database, as shown in Fig. 4. In other words, the corre-
lation between the experimental mass spectrum and the the-
oretical mass spectrum can thus be calculated or estimated
from the fidelity of the quantum system. In the case when the
database is presorted, which can be done on the m /z values,
it has been reported in some cases �33–35� where search
speed is faster than the classical approach. There is one more
problem unsolved: the number of marked states, or the value
of k, is unknown a priori, hence the optimal number of it-
eration ro is unknown. Figure 5 shows the optimal number of
iteration ro computed as the number of solution increases.
The number of the solution is the reflection of the number of
m /z values matched between the experimental and theoreti-
cal spectra. However, since ro is given by �

4
�N

k , we can
safely set a threshold, such that the ratio �N

k is equal to 4
� ;

then we will only need one iteration in all searches having
the highest fidelity score. In other words, if 62% � �2

16 �100�
of the theoretical m /z values match that of the experimental

FIG. 4. The plot of correlation and fidelity against the number of
marked states k, for N=64.

FIG. 5. The plot of optimal number of iteration against the num-
ber of marked states k, for N=64.
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m /z values, the solution can be found in just one iteration,
with high fidelity or probability of success.

We investigated the effects of decoherence on this system
as all physical implementation of quantum system would
have this problem. We considered the noise admixture where
the decoherence is achieved by adding a noise admixture
coefficient of � into the system after the first Grover itera-
tion. The state of the system is given by Eq. �6�. Figure 6
depicts the effect of decoherence on the quantum search re-
sult. It is interesting to note that the effect is more significant
with a larger number of marked states k, i.e., the system
would only be useful under negligible decoherence. Tech-

niques such as error correction or error avoiding can be in-
cluded to counter the effects of decoherence,

�1�t� = �1 − ���1�0� +
�

N
IN. �6�

III. CONCLUSION

This work demonstrated that the famous quantum search
algorithm can be adopted for a correlation-based mass spec-
tra search. We considered the experimental spectrum to be
coded as the oracle for a search by theoretical mass spec-
trum, which led to the multiple solution search by the Grover
algorithm. Knowing that as the number of solutions in-
creased, the optimal number of iterations reduced. In fact,
from the optimal iteration given by �

4
�N

k , if 62% of the ex-
perimental m /z values match those from theoretical ones, or
k=0.62N, only one cycle of search is required. We then
showed in our simulation that after one iteration of Grover
search, the measurement of the fidelity is sufficient to deter-
mine the cross-correlation result of the search. Finally, we
found that decoherence can be destructive to the system,
hence some forms of error correction of error avoiding
mechanisms have to be put in place to ensure the success of
the search.
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